Signaling pathway for resting cyst formation in the ciliated protozoan Colpoda cucullus

Yukari OTANI, Kunihisa SABASHI, Asuka KONDO, Nobuaki NAGANO and Tatsuomi MATSUOKA (Inst. Biol. Sci., Kochi Univ.)

SUMMARY

Resting cyst formation (encystment) of *Colpoda cucullus* is induced by an increase in external Ca^{2+} or overpopulation of *Colpoda* vegetative cells, and is suppressed by the addition of food to the external medium. The Ca^{2+} -mediated or overpopulation-mediated cyst formation was suppressed by calmodulin antagonists (W-7, trifluoperazine), 2'-deoxyadenosine (a P-site inhibitor of adenylate cyclase) and *R*p-cAMPS (a cAMP analog antagonist for cAMP-dependent proteins). In contrast, IBMX (a non-selective inhibitor of phosphodiesterase), cAMP or its membrane-permeable derivative (db-cAMP) had an encystment-inducing effect even in a Ca^{2+} -free medium. These results suggest that encystment induction in *Colpoda* may involve a rise in cAMP concentration through the activation of adenylate cyclase, and its activity is possibly regulated by Ca^{2+} -(calmodulin (Ca^{2+}/CaM). *Colpoda* encystment was suppressed by the addition of D-glucose to the external medium. When D-glucose uptake was blocked by phlorizin, Ca^{2+} -mediated or overpopulation-mediated encystment was markedly suppressed. However, db-cAMP-mediated encystment was not suppressed by D-glucose. The results suggest that internalized D-glucose or its metabolic products have an effect upstream of cAMP production in the signaling pathway for induction of encystment.